
My Open Source Story
(so far!)

January 2025

Pete LeVasseur
Eclipse uProtocol 

Maintainer



Before OSS



In the before times…
● Software engineer in Automotive for ~10 years
● Primarily worked in the area of Automated Driving / 

Advanced Driver Assistance Systems (ADAS)
● Primarily worked in C, C++, some Python for scripting
● Became fairly frustrated with C and C++ around ~2016

○ Especially mentoring people new to the languages
● Found the Rust programming language in 2016

○ Brings memory-, thread-, and type-safety, making software 
written in it much more reliable

● Wrote a small demo using Rust for a side project at work in 
~2017

● Wrote a bare-metal Kalman Filter library in Rust in ~2018

Kalman filter equations



Finding an open-source project to contribute to

● Project at GM I worked on for ~6 years got cancelled in late 2023 :(
● Find Eclipse uProtocol open source project getting staffed by GM folks :)
● There’s an effort to write a Rust language library for uProtocol!

Eclipse uProtocol
● Site: https://eclipse-uprotocol.github.io/
● GitHub project: https://github.com/eclipse-uprotocol

https://eclipse-uprotocol.github.io/
https://github.com/eclipse-uprotocol


Pete’s Open Source Timeline
Jan 
2025

Dec
2023

First P
R

 accepted to up-rust

June
2024

up-streamer-rust m
ade official

May
2024

up-streamer-rust core com
plete

R
ole change to S

taff E
ng

G
et involved in R

ust S
IG

July
2024

Tech lead @
 GM

 for uP Rust

Aug
2024

GM
 Restructuring

Sep
2024

RustConf 2024 in M
ontreal

Safety-Critical Rust Consortium

Oct
2024

Talk for uP at GO
SIM

 in Beijing
Chair Coding Guidelines Group

Nov
2024

Rustacean Station Pod about uP
Start at W

oven
Eclipse SDV Hackathon Coaching

Dec
2024

Talk at Zenoh Users M
eeting 2024

I’ve been involved in OSS for ~1 
year and been fortunate to 
contribute to several efforts!

April
2023

A
ndroid B

inder w
orking in R

ust
in support of up-streamer-rust

Here, talking to the fine folks of 
SEA:M

E!



uProtocol



Eclipse uProtocol ‒ An SDV Service Mesh Framework
Key Takeaway: Eclipse uProtocol allows abstracting away underlying transport 
to let engineers focus on delivering customer value

Presented by me at GOSIM 24 in Beijing: 
https://youtu.be/YWcsv_9kNDU?si=8ua82
7lXmLrnBYiO 

https://youtu.be/YWcsv_9kNDU?si=8ua827lXmLrnBYiO
https://youtu.be/YWcsv_9kNDU?si=8ua827lXmLrnBYiO


Ramping up
● I spent 2-3 weeks reading over the specification (up-spec) to see if the 

Rust implementation abided by it
● I noticed a gap in the Rust language library implementation of uProtocol: 

up-rust
● Namely, there was not validation done on values when serializing the 

UUri to ensure that all the bits and bytes would fit into the on-the-wire 
format (Google Protocol Buffers)

● I wrote a first issue and pull request to address it
● It took a month for my first PR to get merged 😅
● I learned a lot though from this though!

https://github.com/eclipse-uprotocol/up-rust/issues/11
https://github.com/eclipse-uprotocol/up-rust/pull/18


up-streamer-rust: Concept

● Working with the project lead, we identified that the UStreamer component 
could have a proof-of-concept written in Rust

○ UStreamer: a transport-bridge, bridging between underlying transports Foo and Bar
● UStreamer is a stand-alone binary / Zenoh plugin so didn’t need to interact with 

other modules written in C++, just reads config file
E

cl
ip

se
 Z

en
oh

vs
om

ei
p



up-streamer-rust: Roadblock on UTransport
● Identified that the UTransport trait needed to be made thread-safe to support 

ease of use in implementing up-streamer-rust
○ Daniel Krippner put the PR through in up-rust

● Rationale: UPStreamer uses an async executor meaning that that calls to the 
async functions in UTransport would potentially be run on different threads 
each time

https://github.com/eclipse-uprotocol/up-rust/pull/79


up-transport-vsomeip-rust: Necessity!
● An attempt made for approximately two months by other contributors to 

Eclipse uProtocol to write a Rust SOME/IP transport that did not succeed
● There existed a C++ UStreamer implementation that was not compliant 

with spec which would be used instead
E

cl
ip

se
 Z

en
oh

vs
om

ei
p



up-transport-vsomeip-rust: Handling unsafe Rust
● I wrote a Rust wrapper around the C++ vsomeip library, making use of 

Rust’s strong support for C++ interop (cxx, autocxx crates)
● Exposed the Rust vsomeip wrapper, vsomeip-sys, so that 

up-transport-vsomeip-rust could be written in a memory-safe way
● Unfortunately, no other contributors to Eclipse uProtocol knew how Rust’s 

unsafe keyword worked nor had familiarity with Rust’s FFI support
○ Basically YOLO’ed all of vsomeip-sys in with no review!

● Got some great feedback to push to improve to have both vsomeip 
bundled with and provided separately from the crate



Learning the open-source ropes

● You may get fairly direct feedback! This is totally normal
● Issues you open may have a fair bit of back and forth till resolution
● Issues/PRs may never get addressed at all even if you contribute. It happens
● Working code > theoretically perfect code that never arrives
● Generally the bar is higher on code quality and practices

○ The code is public! Not something sitting in an internal company repo
● Not top-down mandates, but rather ground-up percolation of ideas
● Automotive open-source still a bit new, OEMs and suppliers warming to the idea

○ Eclipse SDV putting energy into badges to show level of maturity of software 
practices for projects

○ Eclipse SCORE project aims make more OSS safety-qualifiable for 
automotive



Rust SIG



Eclipse SDV: Rust Special Interest Group
● Florian Gilcher kickstarted the Rust Special Interest Group based out of 

the Eclipse SDV
● Great chance to chat with and learn from someone that had been in the 

Rust space for over a decade
○ I’ve learned more from Florian about leadership and community building than 

Rust tho!
● I became co-lead of the SIG, so I now:

○ Formulate agendas, gathering input
○ Hold meetings, guide discussion
○ Coordinate and contribute to creation of artifacts



A New Road



Forcibly put on a new road!
● GM executed a 1000 person restructuring in August 2024, I was restructured
● Started a blog, writing about the adventures in Eclipse uProtocol
● Started a consulting firm for Rust: Oxidation Partners
● Began actively posting to social media about Rust and Eclipse uProtocol
● Decided together with wife that I would attempt to get another role where I can 

develop in Rust, ideally involved in the open-source community
● Made a gamble, paying out of pocket to go to RustConf in Montreal just a few 

weeks after being laid off
○ Booking so late I had to get a hotel room with three beds to be close to the event!



RustConf 2024 in Montreal
● Have dinner with Eclipse uProtocol project lead 

Steven Hartley
● Got invited to the Safety-Critical Rust Consortium
● Attend kickoff meeting of the Safety-Critical Rust 

Consortium
● Watch some great talks, meet and get to know 

some fellow Rustaceans
● Lead an Unconference session about Rust and 

Industry: Where they Meet
● Attend Zed Hackathon, get to hack on some Vim 

mode bugs in Zed
● Get invited to give a talk about Eclipse uProtocol in 

the Software Defined Vehicle track at GOSIM, an 
open source conference in Beijing in October



GOSIM 2024 in Beijing
● Present a talk about Eclipse uProtocol, its value proposition as a service 

mesh to abstract over underlying transports
● Meet folks doing cool work with Rust in plenty of different domains
● Run into one of the contributors, Allen Wyma, to the Rustacean Station 

Podcast, chat about the problems Eclipse uProtocol is trying to solve, and 
he invites me on the podcast.



Safety-Critical Rust Consortium: Coding Guidelines
● I kept asking questions about the Coding Guidelines Subcommittee, as I was 

very bothered by my earlier experience of no one being able to review my 
unsafe code in uProtocol. It was suggested I could chair the group!

● Was suggested by Florian Gilcher that we’re lacking good, practical guidelines 
on unsafe in Rust, so this idea would be valuable to both safety-critical and non

● We were able to meet up with some contacts Florian had, finding out about the 
Learn unsafe Rust book as a place to contribute work.

● Run for a few months now, we’re starting to break the work down of the 
different pieces of unsafe for folks to investigate.



Woven



The Right Fit at Woven by Toyota 
● From talking with folks from Woven by Toyota I met at RustConf and the 

following interviews it sounded like I checked a number of boxes: SDV, 
open-source, Rust

● Folks were aware of the work I was putting in within the open-source 
community for Rust, so I took this as a strong signal for me to continue my Rust 
advocacy at Woven

● "Safety is our foremost priority in vehicle software development. Traditionally, 
achieving the highest levels of safety has been a complex and lengthy endeavor, 
requiring the use of specialized tools and processes beyond the programming 
language. We are therefore pleased to collaborate with leading experts in the 
safety industry to integrate new tools such as Rust into our safety-critical 
systems," said JF Bastien, Distinguished Engineer at Woven by Toyota.

Reference: https://foundation.rust-lang.org/news/announcing-the-safety-critical-rust-consortium/

https://foundation.rust-lang.org/news/announcing-the-safety-critical-rust-consortium/


Woven by Toyota: The Mission

Reference: https://woven.toyota/en/

“Woven by Toyota will help Toyota to 
develop next-generation cars and to realize 
a mobility society in which everyone can 
move freely, happily and safely.”

https://woven.toyota/en/


Woven by Toyota: Arene OS

Reference: https://woven.toyota/en/arene/

“The Arene OS platform draws on 
Toyota’s long history of automotive 
know-how and operational expertise. A 
combination of build tools and 
on-vehicle software services, Arene 
enables the development of integrated, 
software-driven experiences, all with the 
quality and efficiency that is 
synonymous with Toyota.”

https://woven.toyota/en/arene/


Conclusion



Open Source: Pursue passions, create awesome 
projects

● Do you have a programming language, a technology, a domain you find cool?
○ Jump in and learn more. Where are the gaps? Can you contribute docs? A test?

● Find people who care deeply about doing the right thing and pushing forward
○ It’s possible in your day job you’d like to do things “the right way”, but business 

objectives get in the way!
● Is open source right for everyone? Maybe, maybe not

○ Spam contributions! Drive-by PRs!
● Do open-source =/=> get a job

○ Can it lead to one? Sure! But I did Rust for several years just for fun before having a 
chance to use it professionally

● Bar is surprisingly low to contributing to many projects. Follow contribution 
guidelines and jump in!



Thank You!

JOIN US ON GITHUB!
Eclipse uProtocol GitHub Project:

https://github.com/eclipse-uprotocol
Eclipse SDV Blueprint: Service-to-Signal:

https://github.com/eclipse-sdv-blueprints/service-to-signal
Eclipse uProtocol Website:
https://eclipse-uprotocol.github.io

https://github.com/eclipse-uprotocol
https://github.com/eclipse-sdv-blueprints/service-to-signal
https://eclipse-uprotocol.github.io/


References



References

● Background image: 
https://www.flickr.com/photos/spodzone/33302660672/

https://www.flickr.com/photos/spodzone/33302660672/

